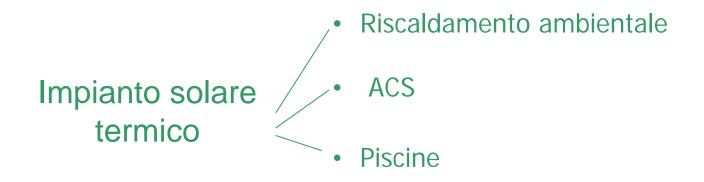
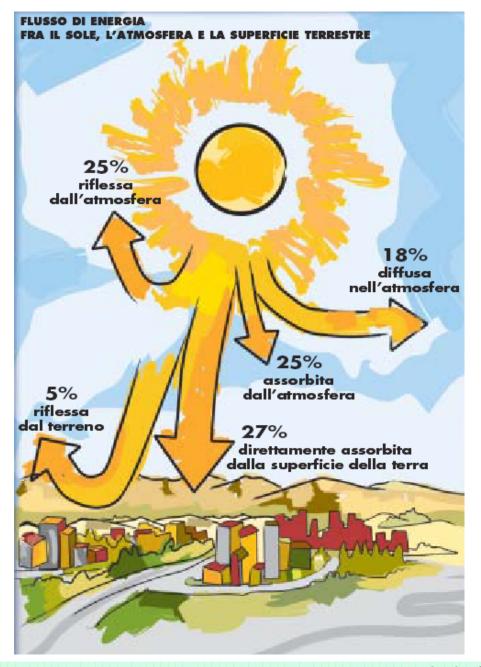
FONTI RINNOVABILI


SOLARE TERMICO

MODULO DI IMPIANTI

Architetto C. Naticchioni

I dispositivi che consentono di ricavare direttamente energia dal sole sono di diversi tipi:


- •i pannelli solari per produrre acqua calda,
- i sistemi fotovoltaici per produrre elettricità
- •specchi concentratori per produrre calore ad alta temperatura da utilizzare in centrali elettriche.

- •La quantità di energia solare che arriva sulla superficie terrestre e che può essere utilmente raccolta da un dispositivo a captazione solare dipende dall'**irraggiamento** del luogo.
- •L'irraggiamento è, infatti, la quantità di energia solare incidente su una superficie unitaria in un determinato intervallo di tempo, tipicamente un giorno (kWh/m²/giorno).
- •Il valore istantaneo della radiazione solare incidente sull'unità di superficie viene invece denominato **radianza** (kW/m²)

• L'irraggiamento è influenzato dalle condizioni climatiche locali (nuvolosità, foschia ecc..) e dipende dalla latitudine del luogo: come è noto cresce quanto più ci si avvicina all'equatore.

- In Italia, l'irraggiamento medio annuale varia tra:
- 3,6 kWh/m² giorno della pianura padana
- 4,7 kWh/m² giorno del centro Sud
- 5,4 kWh/m² giorno della Sicilia.

Per ottenere la massima produzione, in fase di progettazione di un impianto, bisogna studiare l'irraggiamento e l'insolazione del sito. Questo consente di decidere l'inclinazione e l'orientamento della superficie del dispositivo captante.

NB_L'importante è, naturalmente, posizionare il pannello in modo da evitare zone d'ombra.

- Un collettore solare trasforma la radiazione solare in calore e si distingue così da un pannello fotovoltaico, che trasforma la luce del sole in corrente elettrica.
- Mentre in estate l'impianto solare copre tutto il fabbisogno di energia per il riscaldamento dell'acqua sanitaria, in inverno e nei giorni con scarsa insolazione serve per il preriscaldamento dell'acqua.

- L'uso dei pannelli solari termici è possibile anche per il riscaldamento degli ambienti utilizzando impianti combinati per il riscaldamento dell'acqua calda e degli ambienti, anche se l'irraggiamento disponibile durante la stagione di riscaldamento è molto minore che in estate. L'uso di impianti combinati è raccomandato nei casi in cui sono già stati realizzate altre misure per il risparmio energetico (per esempio adeguata coibentazione termica) e si prevede un sistema di riscaldamento a bassa temperatura.
- L'area di collettore necessaria varia da 1,5 a 3 m²/kW di potenza nominale per il riscaldamento dell'edificio.

E' consuetudine dimensionare gli impianti in modo che durante i mesi estivi si raggiunga una copertura totale, del 100% del fabbisogno. Per impianti dedicati al riscaldamento dell'acqua sanitaria nel settore residenziale ciò si ottiene con l'installazione di una superficie di collettori di circa 0,8-1,2 m² (a seconda della località) per ogni abitante collegato. Con tale dimensionamento si ottiene un risparmio annuo di energia corrispondente a circa il 70% in nord Italia e all'80% nel centro e nel sud. Il fabbisogno rimanente viene coperto da una fonte termica ausiliaria.

Analisi di massima del fabbisogno di acqua calda

- Negli edifici residenziali il fabbisogno termico per la produzione di acqua calda rimane costante nel corso dell'anno. Un'indicazione sul fabbisogno di acqua calda è data dal numero di persone che abitano l'edificio.
- Solitamente il consumo giornaliero DI MASSIMA pro capite di acqua calda a 45 °C viene stimato intorno a queste cifre:
- -comfort basso 35 l/(persona/giorno)
- -comfort medio 50 l/(persona/giorno)
- -comfort alto 75 l/(persona/giorno)
- Nel caso si vogliano collegare all'impianto solare anche la lavatrice e la lavastoviglie, il fabbisogno deve essere aumentato di:
- lavatrice 20 l/giorno (1 lavaggio al giorno)
- lavastoviglie 20 l/giorno (1 lavaggio al giorno)

Esempio: Una famiglia di quattro persone necessita, per avere un comfort medio, di circa (50 litri x 4 =) 200 l/giorno di acqua calda. Considerando anche la lavatrice si calcolano circa 230 l/giorno.

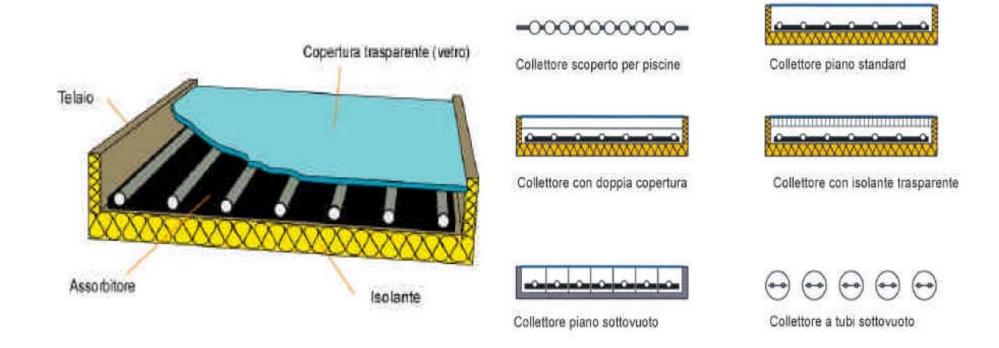
Dimensionamento di massima della superficie dei collettori

• Per una situazione con orientamento ideale (sud, inclinazione 30°) si utilizzano i valori di riferimento di seguito riportati per dimensionare la superficie del collettore. Questa viene quindi calcolata in relazione al fabbisogno giornaliero di acqua calda.

zone in Italia	valori di riferimento per il dimensionamento
Nord	1,2 m ² /(50 l/giorno)
Centro	1,0 m ² /(50 l/giorno)
Sud	0,8 m ² /(50 l/giorno)

I valori in tabella devono essere ridotti del 30 % nel caso in cui si usino collettori a tubi sottovuoto.

CLASSIFICAZIONE


Gli impianti solari termici possono essere classificati in base:

- Tipologia del collettore
- Destinazione d'uso
- Sistema di integrazione

Tipologia del collettore

Struttura di un collettore piano

Tipologie di collettori solari termici

STRUTTURA E FUNZIONAMENTO DI UN COLLETTORE PIANO

- L'elemento principale è l'assorbitore (lastra captante), che ha la funzione di assorbire la radiazione solare incidente a onde corte e di trasformarla in calore (trasformazione fototermica).
- Il fluido termovettore entra nel pannello, si suddivide fra i tubi del fascio all'interno del pannello, e viene poi convogliato nella tubazione di uscita.
- Percorrendo il fascio di tubi il fluido si riscalda:infatti i tubi sono connessi con la lastra assorbente che assorbe l'energia solare incidente; il calore generato è trasmesso per conduttività termica attraverso il metallo e poi ceduto all'acqua per convezione.
- La lastra assorbente è protetta da una lastra di vetro, che ha i compiti di:
 - schermare l'energia raggiante emessa dalla lastra assorbente (per differenza di lunghezza d'onda)
 - limitare il calore disperso per convezione, poiché l'aria che si trova tra la lastra di vetro e la lastra assorbente ha una temperatura più elevata di quella dell'aria esterna;
 - proteggere le parti metalliche dall'aggressione degli agenti esterni.

Tubi sottovuoto "Idrosolar"

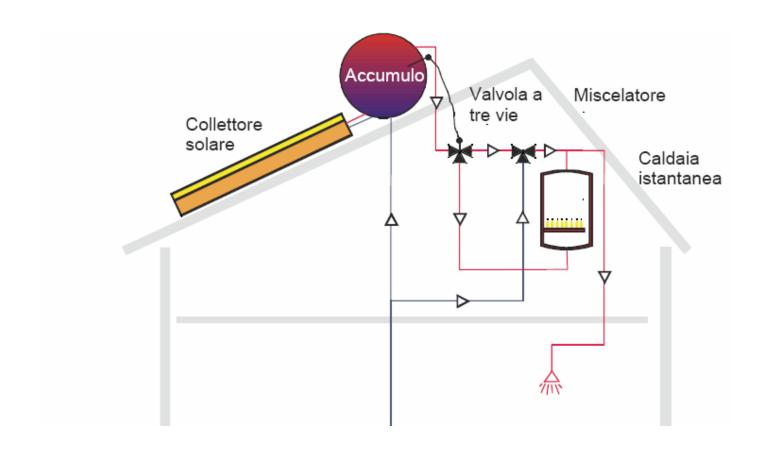
Collettore piano Solahart

Tubi sottovuoto a concentrazione

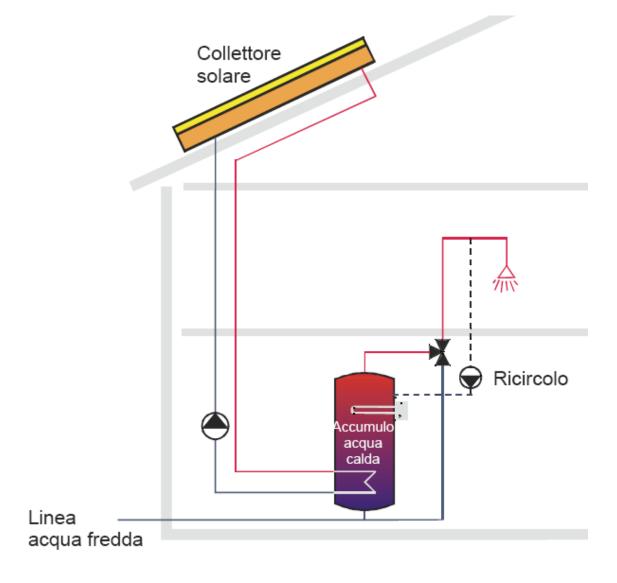

Tubi sottovuoto a concentrazione

Tubo sottovuoto a concentrazione

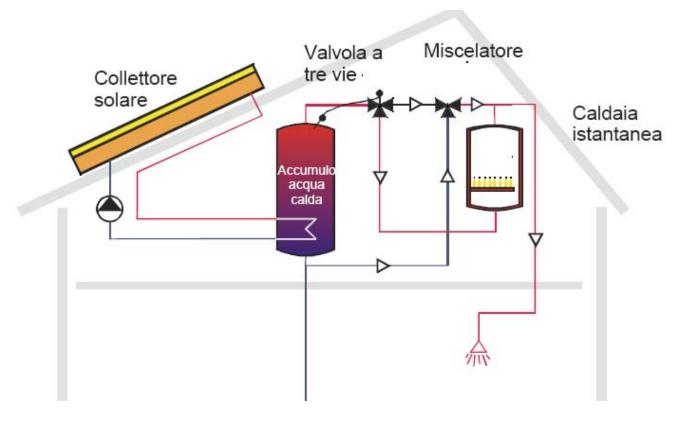
Temperature di lavoro elevate



Impianto compatto o a circolazione naturale per il riscaldamento dell'acqua senza dispositivo di riscaldamento ausiliario


Arch. Cinzia Naticchioni 21

Impianto a circolazione naturale per il riscaldamento dell'acqua sanitaria con integrazione di caldaia istantanea.



Arch. Cinzia Naticchioni 22

Impianto a circolazione forzata con resistenza elettrica integrata

Impianto con centrale di riscaldamento sottotetto

24

Documenti/foto/verso classe A-mostra convegno/2010_03_27/MVI_4987.AVI

Dimensionamento di massima per ACS

- Si stima il fabbisogno di acqua calda sanitaria
- Si devono conoscere i dati della T della zona e della radiazione almeno mensile sul piano inclinato (si cerca di favorire la condizione più sfavorita, cioè quella invernale)
- Si calcola la resa termica dei collettori in base ai dati forniti dal costruttore (in prima approssimazione possiamo stimare circa il 50% medio sull'anno per un collettore piano e il 70% per uno sottovuoto)
- Conoscendo i dati sui fabbisogni e quelli sull'irraggiamento e l'efficienza dei moduli si potrà fare il rapporto tra fabbisogno e resa per metro quadro dei collettori, arrivando ad individuare la superficie captante necessaria

Il serbatoio si dimensiona per 50 l/metro quadro di collettore.

Per una famiglia di 3-4 persone sono sufficienti 2 metri quadri di collettori per coprire il 50 % del fabbisogno annuale di acs

Il pannello solare termico è un investimento conveniente.

Si rientra in pochi anni anche senza incentivi e la sua applicazione può essere estesa anche al riscaldamento e infine al condizionamento degli ambienti.

